共23题,约11720字。

  2017年广东省汕头市高考数学一模试卷(文科)
  参考答案与试题解析
  一、选择题(本大题共12小题,每小题5分,满60分)
  1.已知集合A={x| ≤0},B={0,1,2,3},则A∩B=(  )
  A.{1,2} B.{0,1,2} C.{1} D.{1,2,3}
  【考点】交集及其运算.
  【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.
  【解答】解:由A中不等式变形得:x(x﹣2)≤0且x≠0,
  解得:0<x≤2,即A=(0,2],
  ∵B={0,1,2,3},
  ∴A∩B={1,2},
  故选:A.
  2.已知 =2﹣i,则在复平面内,复数z对应的点位于(  )
  A.第一象限 B.第二象限 C.第三象限 D.第四象限
  【考点】复数代数形式的乘除运算.
  【分析】利用已知条件求出复数z,得到对应点的坐标即可判断选项.
  【解答】解:  =2﹣i,
  ∴=(1﹣i)(2﹣i)=1﹣3i
  ∴z=1+3i
  ∴复数z对应点(1,3)在第一象限.
  故选:A.
  3.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为(  )
  A. B. C. D.
  【考点】列举法计算基本事件数及事件发生的概率.
  【分析】先求出基本事件总数n=8×8=64,再求出取得两个球的编号之和不小于15包含的基本事件个数,由此能求出取得两个球的编号之和不小于15的概率.
  【解答】解:一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,
  从中有放回地每次取一个球,共取2次,
  基本事件总数n=8×8=64,
  取得两个球的编号之和不小于15包含的基本事件有:
  (7,8),(8,7),(8,8),共3个,
  ∴取得两个球的编号之和不小于15的概率为p= .
  故选:C.
  4.命题“ax2﹣2ax+3>0恒成立”是假命题,则实数a的取值范围是(  )
  A.0<a<3 B.a<0或a≥3 C.a<0或a>3 D.a≤0或a≥3
  【考点】命题的真假判断与应用.
  【分析】命题“ax2﹣2ax+3>0恒成立”是假命题,即存在x∈R,使“ax2﹣2ax+3≤0,分类讨论即可.
  【解答】解:命题“ax2﹣2ax+3>0恒成立”是假命题,即存在x∈R,使“ax2﹣2ax+3≤0,
  当a=0时,不符合题意;
  当a<0时,符合题意;
  当a>0时,△=4a2﹣12a≥0⇒a≥3,
  综上:实数a的取值范围是:a<0或a≥3.
  故选:B
  5.函数y= 的图象大致是(  )

欢迎关注育星网公众号“ht88yxw”获取更多信息与服务

相关资源:
Top