2025中考语文试题汇编
  约6480字 
      新课标数学必修1知识点总结
  第一章 集合与函数概念
  一、集合有关概念
  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
  2、集合的中元素的三个特性:
  1.元素的确定性; 2.元素的互异性; 3.元素的无序性
  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
  (4)集合元素的三个特性使集合本身具有了确定性和整体性。
  3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
  1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
  2.集合的表示方法:列举法与描述法。
  注意啊:常用数集及其记法:
  非负整数集(即自然数集) 记作:N
  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
  关于“属于”的概念
  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 
  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
  ①语言描述法:例:{不是直角三角形的三角形}
  ②数学式子描述法:例:不等式x-3>2的解集是{ | x-3>2}或{x| x-3>2}
  4、集合的分类:
  1.有限集 含有有限个元素的集合
  2.无限集 含有无限个元素的集合
  3.空集 不含任何元素的集合  例:{x|x2=-5}
  二、集合间的基本关系
  1.“包含”关系—子集
  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
  2.“相等”关系(5≥5,且5≤5,则5=5)
  实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

欢迎关注育星资源网公众号“yxzyw2002”获取更多信息与服务

相关资源:
Top